Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

K-Nearest Neighbour and Support Vector Machine Hybrid Classification (2007.00045v1)

Published 28 Jun 2020 in cs.CV, cs.LG, and stat.ML

Abstract: In this paper, a novel K-Nearest Neighbour and Support Vector Machine hybrid classification technique has been proposed that is simple and robust. It is based on the concept of discriminative nearest neighbourhood classification. The technique consists of using K-Nearest Neighbour Classification for test samples satisfying a proximity condition. The patterns which do not pass the proximity condition are separated. This is followed by sifting the training set for a fixed number of patterns for every class which are closest to each separated test pattern respectively, based on the Euclidean distance metric. Subsequently, for every separated test sample, a Support Vector Machine is trained on the sifted training set patterns associated with it, and classification for the test sample is done. The proposed technique has been compared to the state of art in this research area. Three datasets viz. the United States Postal Service (USPS) Handwritten Digit Dataset, MNIST Dataset, and an Arabic numeral dataset, the Modified Arabic Digits Database, MADB, have been used to evaluate the performance of the algorithm. The algorithm generally outperforms the other algorithms with which it has been compared.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. A. M. Hafiz (1 paper)
Citations (3)

Summary

We haven't generated a summary for this paper yet.