Papers
Topics
Authors
Recent
2000 character limit reached

Approximation Rates for Neural Networks with Encodable Weights in Smoothness Spaces (2006.16822v2)

Published 30 Jun 2020 in math.FA, cs.NA, and math.NA

Abstract: We examine the necessary and sufficient complexity of neural networks to approximate functions from different smoothness spaces under the restriction of encodable network weights. Based on an entropy argument, we start by proving lower bounds for the number of nonzero encodable weights for neural network approximation in Besov spaces, Sobolev spaces and more. These results are valid for all sufficiently smooth activation functions. Afterwards, we provide a unifying framework for the construction of approximate partitions of unity by neural networks with fairly general activation functions. This allows us to approximate localized Taylor polynomials by neural networks and make use of the Bramble-Hilbert Lemma. Based on our framework, we derive almost optimal upper bounds in higher-order Sobolev norms. This work advances the theory of approximating solutions of partial differential equations by neural networks.

Citations (81)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.