Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Concave Aspects of Submodular Functions (2006.16784v1)

Published 27 Jun 2020 in cs.DM, cs.IT, cs.LG, math.CO, math.IT, and math.OC

Abstract: Submodular Functions are a special class of set functions, which generalize several information-theoretic quantities such as entropy and mutual information [1]. Submodular functions have subgradients and subdifferentials [2] and admit polynomial-time algorithms for minimization, both of which are fundamental characteristics of convex functions. Submodular functions also show signs similar to concavity. Submodular function maximization, though NP-hard, admits constant-factor approximation guarantees, and concave functions composed with modular functions are submodular. In this paper, we try to provide a more complete picture of the relationship between submodularity with concavity. We characterize the super-differentials and polyhedra associated with upper bounds and provide optimality conditions for submodular maximization using the-super differentials. This paper is a concise and shorter version of our longer preprint [3].

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.