Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Linear transformations between dominating sets in the TAR-model (2006.16726v1)

Published 30 Jun 2020 in cs.DM and cs.DS

Abstract: Given a graph $G$ and an integer $k$, a token addition and removal ({\sf TAR} for short) reconfiguration sequence between two dominating sets $D_{\sf s}$ and $D_{\sf t}$ of size at most $k$ is a sequence $S= \langle D_0 = D_{\sf s}, D_1 \ldots, D_\ell = D_{\sf t} \rangle$ of dominating sets of $G$ such that any two consecutive dominating sets differ by the addition or deletion of one vertex, and no dominating set has size bigger than $k$. We first improve a result of Haas and Seyffarth, by showing that if $k=\Gamma(G)+\alpha(G)-1$ (where $\Gamma(G)$ is the maximum size of a minimal dominating set and $\alpha(G)$ the maximum size of an independent set), then there exists a linear {\sf TAR} reconfiguration sequence between any pair of dominating sets. We then improve these results on several graph classes by showing that the same holds for $K_{\ell}$-minor free graph as long as $k \ge \Gamma(G)+O(\ell \sqrt{\log \ell})$ and for planar graphs whenever $k \ge \Gamma(G)+3$. Finally, we show that if $k=\Gamma(G)+tw(G)+1$, then there also exists a linear transformation between any pair of dominating sets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.