Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

COAX: Correlation-Aware Indexing on Multidimensional Data with Soft Functional Dependencies (2006.16393v3)

Published 29 Jun 2020 in cs.DB, cs.DC, and cs.LG

Abstract: Recent work proposed learned index structures, which learn the distribution of the underlying dataset to improve performance. The initial work on learned indexes has shown that by learning the cumulative distribution function of the data, index structures such as the B-Tree can improve their performance by one order of magnitude while having a smaller memory footprint. In this paper, we present COAX, a learned index for multidimensional data that, instead of learning the distribution of keys, learns the correlations between attributes of the dataset. Our approach is driven by the observation that in many datasets, values of two (or multiple) attributes are correlated. COAX exploits these correlations to reduce the dimensionality of the datasets. More precisely, we learn how to infer one (or multiple) attribute $C_d$ from the remaining attributes and hence no longer need to index attribute $C_d$. This reduces the dimensionality and hence makes the index smaller and more efficient. We theoretically investigate the effectiveness of the proposed technique based on the predictability of the FD attributes. We further show experimentally that by predicting correlated attributes in the data, we can improve the query execution time and reduce the memory overhead of the index. In our experiments, we reduce the execution time by 25% while reducing the memory footprint of the index by four orders of magnitude.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.