Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

AMG preconditioners for Linear Solvers towards Extreme Scale (2006.16147v4)

Published 29 Jun 2020 in math.NA and cs.NA

Abstract: Linear solvers for large and sparse systems are a key element of scientific applications, and their efficient implementation is necessary to harness the computational power of current computers. Algebraic MultiGrid (AMG) preconditioners are a popular ingredient of such linear solvers; this is the motivation for the present work where we examine some recent developments in a package of AMG preconditioners to improve efficiency, scalability, and robustness on extreme-scale problems. The main novelty is the design and implementation of a parallel coarsening algorithm based on aggregation of unknowns employing weighted graph matching techniques; this is a completely automated procedure, requiring no information from the user, and applicable to general symmetric positive definite (s.p.d.) matrices. The new coarsening algorithm improves in terms of numerical scalability at low operator complexity over decoupled aggregation algorithms available in previous releases of the package. The preconditioners package is built on the parallel software framework \texttt{PSBLAS}, which has also been updated to progress towards exascale. We present weak scalability results on one of the most powerful supercomputers in Europe, for linear systems with sizes up to $O(10{10})$ unknowns.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.