Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

$k$FW: A Frank-Wolfe style algorithm with stronger subproblem oracles (2006.16142v2)

Published 29 Jun 2020 in math.OC and cs.LG

Abstract: This paper proposes a new variant of Frank-Wolfe (FW), called $k$FW. Standard FW suffers from slow convergence: iterates often zig-zag as update directions oscillate around extreme points of the constraint set. The new variant, $k$FW, overcomes this problem by using two stronger subproblem oracles in each iteration. The first is a $k$ linear optimization oracle ($k$LOO) that computes the $k$ best update directions (rather than just one). The second is a $k$ direction search ($k$DS) that minimizes the objective over a constraint set represented by the $k$ best update directions and the previous iterate. When the problem solution admits a sparse representation, both oracles are easy to compute, and $k$FW converges quickly for smooth convex objectives and several interesting constraint sets: $k$FW achieves finite $\frac{4L_f3D4}{\gamma\delta2}$ convergence on polytopes and group norm balls, and linear convergence on spectrahedra and nuclear norm balls. Numerical experiments validate the effectiveness of $k$FW and demonstrate an order-of-magnitude speedup over existing approaches.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.