Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalizable Cone Beam CT Esophagus Segmentation Using Physics-Based Data Augmentation (2006.15713v2)

Published 28 Jun 2020 in eess.IV and cs.CV

Abstract: Automated segmentation of esophagus is critical in image guided/adaptive radiotherapy of lung cancer to minimize radiation-induced toxicities such as acute esophagitis. We developed a semantic physics-based data augmentation method for segmenting esophagus in both planning CT (pCT) and cone-beam CT (CBCT) using 3D convolutional neural networks. 191 cases with their pCT and CBCTs from four independent datasets were used to train a modified 3D-Unet architecture with a multi-objective loss function specifically designed for soft-tissue organs such as esophagus. Scatter artifacts and noise were extracted from week 1 CBCTs using power law adaptive histogram equalization method and induced to the corresponding pCT followed by reconstruction using CBCT reconstruction parameters. Moreover, we leverage physics-based artifact induced pCTs to drive the esophagus segmentation in real weekly CBCTs. Segmentations were evaluated using geometric Dice and Hausdorff distance as well as dosimetrically using mean esophagus dose and D5cc. Due to the physics-based data augmentation, our model trained just on the synthetic CBCTs was robust and generalizable enough to also produce state-of-the-art results on the pCTs and CBCTs, achieving 0.81 and 0.74 Dice overlap. Our physics-based data augmentation spans the realistic noise/artifact spectrum across patient CBCT/pCT data and can generalize well across modalities with the potential to improve the accuracy of treatment setup and response analysis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.