Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MvMM-RegNet: A new image registration framework based on multivariate mixture model and neural network estimation (2006.15573v2)

Published 28 Jun 2020 in cs.CV

Abstract: Current deep-learning-based registration algorithms often exploit intensity-based similarity measures as the loss function, where dense correspondence between a pair of moving and fixed images is optimized through backpropagation during training. However, intensity-based metrics can be misleading when the assumption of intensity class correspondence is violated, especially in cross-modality or contrast-enhanced images. Moreover, existing learning-based registration methods are predominantly applicable to pairwise registration and are rarely extended to groupwise registration or simultaneous registration with multiple images. In this paper, we propose a new image registration framework based on multivariate mixture model (MvMM) and neural network estimation. A generative model consolidating both appearance and anatomical information is established to derive a novel loss function capable of implementing groupwise registration. We highlight the versatility of the proposed framework for various applications on multimodal cardiac images, including single-atlas-based segmentation (SAS) via pairwise registration and multi-atlas segmentation (MAS) unified by groupwise registration. We evaluated performance on two publicly available datasets, i.e. MM-WHS-2017 and MS-CMRSeg-2019. The results show that the proposed framework achieved an average Dice score of $0.871\pm 0.025$ for whole-heart segmentation on MR images and $0.783\pm 0.082$ for myocardium segmentation on LGE MR images.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.