Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Logarithmic regret for episodic continuous-time linear-quadratic reinforcement learning over a finite-time horizon (2006.15316v4)

Published 27 Jun 2020 in math.OC, cs.LG, and stat.ML

Abstract: We study finite-time horizon continuous-time linear-quadratic reinforcement learning problems in an episodic setting, where both the state and control coefficients are unknown to the controller. We first propose a least-squares algorithm based on continuous-time observations and controls, and establish a logarithmic regret bound of order $O((\ln M)(\ln\ln M))$, with $M$ being the number of learning episodes. The analysis consists of two parts: perturbation analysis, which exploits the regularity and robustness of the associated Riccati differential equation; and parameter estimation error, which relies on sub-exponential properties of continuous-time least-squares estimators. We further propose a practically implementable least-squares algorithm based on discrete-time observations and piecewise constant controls, which achieves similar logarithmic regret with an additional term depending explicitly on the time stepsizes used in the algorithm.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.