Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On 2-Clubs in Graph-Based Data Clustering: Theory and Algorithm Engineering (2006.14972v1)

Published 26 Jun 2020 in cs.DS

Abstract: Editing a graph into a disjoint union of clusters is a standard optimization task in graph-based data clustering. Here, complementing classic work where the clusters shall be cliques, we focus on clusters that shall be 2-clubs, that is, subgraphs of diameter two. This naturally leads to the two NP-hard problems 2-Club Cluster Editing (the allowed editing operations are edge insertion and edge deletion) and 2-Club Cluster Vertex Deletion (the allowed editing operations are vertex deletions). Answering an open question from the literature, we show that 2-Club Cluster Editing is W[2]-hard with respect to the number of edge modifications, thus contrasting the fixed-parameter tractability result for the classic Cluster Editing problem (considering cliques instead of 2-clubs). Then focusing on 2-Club Cluster Vertex Deletion, which is easily seen to be fixed-parameter tractable, we show that under standard complexity-theoretic assumptions it does not have a polynomial-size problem kernel when parameterized by the number of vertex deletions. Nevertheless, we develop several effective data reduction and pruning rules, resulting in a competitive solver, clearly outperforming a standard CPLEX solver in most instances of an established biological test data set.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube