Papers
Topics
Authors
Recent
2000 character limit reached

Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms (2006.14514v4)

Published 25 Jun 2020 in cs.LG, math.OC, math.PR, and stat.ML

Abstract: Artificial neural networks (ANNs) are typically highly nonlinear systems which are finely tuned via the optimization of their associated, non-convex loss functions. In many cases, the gradient of any such loss function has superlinear growth, making the use of the widely-accepted (stochastic) gradient descent methods, which are based on Euler numerical schemes, problematic. We offer a new learning algorithm based on an appropriately constructed variant of the popular stochastic gradient Langevin dynamics (SGLD), which is called tamed unadjusted stochastic Langevin algorithm (TUSLA). We also provide a nonasymptotic analysis of the new algorithm's convergence properties in the context of non-convex learning problems with the use of ANNs. Thus, we provide finite-time guarantees for TUSLA to find approximate minimizers of both empirical and population risks. The roots of the TUSLA algorithm are based on the taming technology for diffusion processes with superlinear coefficients as developed in \citet{tamed-euler, SabanisAoAP} and for MCMC algorithms in \citet{tula}. Numerical experiments are presented which confirm the theoretical findings and illustrate the need for the use of the new algorithm in comparison to vanilla SGLD within the framework of ANNs.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.