Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

New Approximations and Hardness Results for Submodular Partitioning Problems (2006.14312v3)

Published 25 Jun 2020 in cs.DS

Abstract: We consider the following class of submodular k-multiway partitioning problems: (Sub-$k$-MP) $\min \sum_{i=1}k f(S_i): S_1 \uplus S_2 \uplus \cdots \uplus S_k = V \mbox{ and } S_i \neq \emptyset \mbox{ for all }i\in [k]$. Here $f$ is a non-negative submodular function, and $\uplus$ denotes the union of disjoint sets. Hence the goal is to partition $V$ into $k$ non-empty sets $S_1,S_2,\ldots,S_k$ such that $\sum_{i=1}k f(S_i)$ is minimized. These problems were introduced by Zhao et al. partly motivated by applications to network reliability analysis, VLSI design, hypergraph cut, and other partitioning problems. In this work we revisit this class of problems and shed some light onto their hardness of approximation in the value oracle model. We provide new unconditional hardness results for Sub-$k$-MP in the special settings where the function $f$ is either monotone or symmetric. For symmetric functions we show that given any $\epsilon > 0$, any algorithm achieving a $(2 - \epsilon)$-approximation requires exponentially many queries in the value oracle model. For monotone objectives we show that given any $\epsilon > 0$, any algorithm achieving a $(4/3 - \epsilon)$-approximation requires exponentially many queries in the value oracle model. We then extend Sub-$k$-MP to a larger class of partitioning problems, where the functions $f_i(S_i)$ can be different, and there is a more general partitioning constraint $ S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$ for some family $\mathcal{F} \subseteq 2V$ of feasible sets. We provide a black box reduction that allows us to leverage several existing results from the literature; leading to new approximations for this class of problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.