Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Implicitly Maximizing Margins with the Hinge Loss (2006.14286v1)

Published 25 Jun 2020 in cs.LG and stat.ML

Abstract: A new loss function is proposed for neural networks on classification tasks which extends the hinge loss by assigning gradients to its critical points. We will show that for a linear classifier on linearly separable data with fixed step size, the margin of this modified hinge loss converges to the $\ell_2$ max-margin at the rate of $\mathcal{O}( 1/t )$. This rate is fast when compared with the $\mathcal{O}(1/\log t)$ rate of exponential losses such as the logistic loss. Furthermore, empirical results suggest that this increased convergence speed carries over to ReLU networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.