Papers
Topics
Authors
Recent
2000 character limit reached

Implicitly Maximizing Margins with the Hinge Loss (2006.14286v1)

Published 25 Jun 2020 in cs.LG and stat.ML

Abstract: A new loss function is proposed for neural networks on classification tasks which extends the hinge loss by assigning gradients to its critical points. We will show that for a linear classifier on linearly separable data with fixed step size, the margin of this modified hinge loss converges to the $\ell_2$ max-margin at the rate of $\mathcal{O}( 1/t )$. This rate is fast when compared with the $\mathcal{O}(1/\log t)$ rate of exponential losses such as the logistic loss. Furthermore, empirical results suggest that this increased convergence speed carries over to ReLU networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.