Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Class-Similarity Based Label Smoothing for Confidence Calibration (2006.14028v2)

Published 24 Jun 2020 in cs.LG and stat.ML

Abstract: Generating confidence calibrated outputs is of utmost importance for the applications of deep neural networks in safety-critical decision-making systems. The output of a neural network is a probability distribution where the scores are estimated confidences of the input belonging to the corresponding classes, and hence they represent a complete estimate of the output likelihood relative to all classes. In this paper, we propose a novel form of label smoothing to improve confidence calibration. Since different classes are of different intrinsic similarities, more similar classes should result in closer probability values in the final output. This motivates the development of a new smooth label where the label values are based on similarities with the reference class. We adopt different similarity measurements, including those that capture feature-based similarities or semantic similarity. We demonstrate through extensive experiments, on various datasets and network architectures, that our approach consistently outperforms state-of-the-art calibration techniques including uniform label smoothing.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.