Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bayesian Sampling Bias Correction: Training with the Right Loss Function (2006.13798v1)

Published 24 Jun 2020 in cs.LG, q-bio.QM, stat.AP, and stat.ML

Abstract: We derive a family of loss functions to train models in the presence of sampling bias. Examples are when the prevalence of a pathology differs from its sampling rate in the training dataset, or when a machine learning practioner rebalances their training dataset. Sampling bias causes large discrepancies between model performance in the lab and in more realistic settings. It is omnipresent in medical imaging applications, yet is often overlooked at training time or addressed on an ad-hoc basis. Our approach is based on Bayesian risk minimization. For arbitrary likelihood models we derive the associated bias corrected loss for training, exhibiting a direct connection to information gain. The approach integrates seamlessly in the current paradigm of (deep) learning using stochastic backpropagation and naturally with Bayesian models. We illustrate the methodology on case studies of lung nodule malignancy grading.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube