Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Parameterized Family of Meta-Submodular Functions (2006.13754v1)

Published 23 Jun 2020 in cs.DS, cs.CG, cs.DM, cs.GT, and cs.LG

Abstract: Submodular function maximization has found a wealth of new applications in machine learning models during the past years. The related supermodular maximization models (submodular minimization) also offer an abundance of applications, but they appeared to be highly intractable even under simple cardinality constraints. Hence, while there are well-developed tools for maximizing a submodular function subject to a matroid constraint, there is much less work on the corresponding supermodular maximization problems. We give a broad parameterized family of monotone functions which includes submodular functions and a class of supermodular functions containing diversity functions. Functions in this parameterized family are called \emph{$\gamma$-meta-submodular}. We develop local search algorithms with approximation factors that depend only on the parameter $\gamma$. We show that the $\gamma$-meta-submodular families include well-known classes of functions such as meta-submodular functions ($\gamma=0$), metric diversity functions and proportionally submodular functions (both with $\gamma=1$), diversity functions based on negative-type distances or Jensen-Shannon divergence (both with $\gamma=2$), and $\sigma$-semi metric diversity functions ($\gamma = \sigma$).

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.