Papers
Topics
Authors
Recent
2000 character limit reached

Embedding Differentiable Sparsity into Deep Neural Network (2006.13716v1)

Published 23 Jun 2020 in cs.LG and stat.ML

Abstract: In this paper, we propose embedding sparsity into the structure of deep neural networks, where model parameters can be exactly zero during training with the stochastic gradient descent. Thus, it can learn the sparsified structure and the weights of networks simultaneously. The proposed approach can learn structured as well as unstructured sparsity.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.