Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep Categorization with Semi-Supervised Self-Organizing Maps (2006.13682v1)

Published 17 Jun 2020 in cs.LG, cs.NE, and stat.ML

Abstract: Nowadays, with the advance of technology, there is an increasing amount of unstructured data being generated every day. However, it is a painful job to label and organize it. Labeling is an expensive, time-consuming, and difficult task. It is usually done manually, which collaborates with the incorporation of noise and errors to the data. Hence, it is of great importance to developing intelligent models that can benefit from both labeled and unlabeled data. Currently, works on unsupervised and semi-supervised learning are still being overshadowed by the successes of purely supervised learning. However, it is expected that they become far more important in the longer term. This article presents a semi-supervised model, called Batch Semi-Supervised Self-Organizing Map (Batch SS-SOM), which is an extension of a SOM incorporating some advances that came with the rise of Deep Learning, such as batch training. The results show that Batch SS-SOM is a good option for semi-supervised classification and clustering. It performs well in terms of accuracy and clustering error, even with a small number of labeled samples, as well as when presented to unsupervised data, and shows competitive results in transfer learning scenarios in traditional image classification benchmark datasets.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.