Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Off-the-grid: Fast and Effective Hyperparameter Search for Kernel Clustering (2006.13567v1)

Published 24 Jun 2020 in cs.LG and stat.ML

Abstract: Kernel functions are a powerful tool to enhance the $k$-means clustering algorithm via the kernel trick. It is known that the parameters of the chosen kernel function can have a dramatic impact on the result. In supervised settings, these can be tuned via cross-validation, but for clustering this is not straightforward and heuristics are usually employed. In this paper we study the impact of kernel parameters on kernel $k$-means. In particular, we derive a lower bound, tight up to constant factors, below which the parameter of the RBF kernel will render kernel $k$-means meaningless. We argue that grid search can be ineffective for hyperparameter search in this context and propose an alternative algorithm for this purpose. In addition, we offer an efficient implementation based on fast approximate exponentiation with provable quality guarantees. Our experimental results demonstrate the ability of our method to efficiently reveal a rich and useful set of hyperparameter values.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.