Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamic Functional Connectivity and Graph Convolution Network for Alzheimer's Disease Classification (2006.13510v1)

Published 24 Jun 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Alzheimer's disease (AD) is the most prevalent form of dementia. Traditional methods cannot achieve efficient and accurate diagnosis of AD. In this paper, we introduce a novel method based on dynamic functional connectivity (dFC) that can effectively capture changes in the brain. We compare and combine four different types of features including amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), dFC and the adjacency matrix of different brain structures between subjects. We use graph convolution network (GCN) which consider the similarity of brain structure between patients to solve the classification problem of non-Euclidean domains. The proposed method's accuracy and the area under the receiver operating characteristic curve achieved 91.3% and 98.4%. This result demonstrated that our proposed method can be used for detecting AD.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.