Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Local Stochastic Approximation: A Unified View of Federated Learning and Distributed Multi-Task Reinforcement Learning Algorithms (2006.13460v1)

Published 24 Jun 2020 in cs.LG, math.OC, and stat.ML

Abstract: Motivated by broad applications in reinforcement learning and federated learning, we study local stochastic approximation over a network of agents, where their goal is to find the root of an operator composed of the local operators at the agents. Our focus is to characterize the finite-time performance of this method when the data at each agent are generated from Markov processes, and hence they are dependent. In particular, we provide the convergence rates of local stochastic approximation for both constant and time-varying step sizes. Our results show that these rates are within a logarithmic factor of the ones under independent data. We then illustrate the applications of these results to different interesting problems in multi-task reinforcement learning and federated learning.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.