Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Automating Text Naturalness Evaluation of NLG Systems (2006.13268v1)

Published 23 Jun 2020 in cs.CL and cs.LG

Abstract: Automatic methods and metrics that assess various quality criteria of automatically generated texts are important for developing NLG systems because they produce repeatable results and allow for a fast development cycle. We present here an attempt to automate the evaluation of text naturalness which is a very important characteristic of natural language generation methods. Instead of relying on human participants for scoring or labeling the text samples, we propose to automate the process by using a human likeliness metric we define and a discrimination procedure based on large pretrained LLMs with their probability distributions. We analyze the text probability fractions and observe how they are influenced by the size of the generative and discriminative models involved in the process. Based on our results, bigger generators and larger pretrained discriminators are more appropriate for a better evaluation of text naturalness. A comprehensive validation procedure with human participants is required as follow up to check how well this automatic evaluation scheme correlates with human judgments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.