Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Meta Transfer Learning for Emotion Recognition (2006.13211v1)

Published 23 Jun 2020 in cs.CV

Abstract: Deep learning has been widely adopted in automatic emotion recognition and has lead to significant progress in the field. However, due to insufficient annotated emotion datasets, pre-trained models are limited in their generalization capability and thus lead to poor performance on novel test sets. To mitigate this challenge, transfer learning performing fine-tuning on pre-trained models has been applied. However, the fine-tuned knowledge may overwrite and/or discard important knowledge learned from pre-trained models. In this paper, we address this issue by proposing a PathNet-based transfer learning method that is able to transfer emotional knowledge learned from one visual/audio emotion domain to another visual/audio emotion domain, and transfer the emotional knowledge learned from multiple audio emotion domains into one another to improve overall emotion recognition accuracy. To show the robustness of our proposed system, various sets of experiments for facial expression recognition and speech emotion recognition task on three emotion datasets: SAVEE, EMODB, and eNTERFACE have been carried out. The experimental results indicate that our proposed system is capable of improving the performance of emotion recognition, making its performance substantially superior to the recent proposed fine-tuning/pre-trained models based transfer learning methods.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.