Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Show me the Way: Intrinsic Motivation from Demonstrations (2006.12917v2)

Published 23 Jun 2020 in cs.LG and stat.ML

Abstract: The study of exploration in the domain of decision making has a long history but remains actively debated. From the vast literature that addressed this topic for decades under various points of view (e.g., developmental psychology, experimental design, artificial intelligence), intrinsic motivation emerged as a concept that can practically be transferred to artificial agents. Especially, in the recent field of Deep Reinforcement Learning (RL), agents implement such a concept (mainly using a novelty argument) in the shape of an exploration bonus, added to the task reward, that encourages visiting the whole environment. This approach is supported by the large amount of theory on RL for which convergence to optimality assumes exhaustive exploration. Yet, Human Beings and mammals do not exhaustively explore the world and their motivation is not only based on novelty but also on various other factors (e.g., curiosity, fun, style, pleasure, safety, competition, etc.). They optimize for life-long learning and train to learn transferable skills in playgrounds without obvious goals. They also apply innate or learned priors to save time and stay safe. For these reasons, we propose to learn an exploration bonus from demonstrations that could transfer these motivations to an artificial agent with little assumptions about their rationale. Using an inverse RL approach, we show that complex exploration behaviors, reflecting different motivations, can be learnt and efficiently used by RL agents to solve tasks for which exhaustive exploration is prohibitive.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.