Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Efficient Smoothing Proximal Gradient Algorithm for Convex Clustering (2006.12592v1)

Published 22 Jun 2020 in cs.LG, stat.ME, and stat.ML

Abstract: Cluster analysis organizes data into sensible groupings and is one of fundamental modes of understanding and learning. The widely used K-means and hierarchical clustering methods can be dramatically suboptimal due to local minima. Recently introduced convex clustering approach formulates clustering as a convex optimization problem and ensures a globally optimal solution. However, the state-of-the-art convex clustering algorithms, based on the alternating direction method of multipliers (ADMM) or the alternating minimization algorithm (AMA), require large computation and memory space, which limits their applications. In this paper, we develop a very efficient smoothing proximal gradient algorithm (Sproga) for convex clustering. Our Sproga is faster than ADMM- or AMA-based convex clustering algorithms by one to two orders of magnitude. The memory space required by Sproga is less than that required by ADMM and AMA by at least one order of magnitude. Computer simulations and real data analysis show that Sproga outperforms several well known clustering algorithms including K-means and hierarchical clustering. The efficiency and superior performance of our algorithm will help convex clustering to find its wide application.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.