Papers
Topics
Authors
Recent
2000 character limit reached

Laplacian Mixture Model Point Based Registration (2006.12582v1)

Published 22 Jun 2020 in cs.CV

Abstract: Point base registration is an important part in many machine VISIOn applications, medical diagnostics, agricultural studies etc. The goal of point set registration is to find correspondences between different data sets and estimate the appropriate transformation that can map one set to another. Here we introduce a novel method for matching of different data sets based on Laplacian distribution. We consider the alignment of two point sets as probability density estimation problem. By using maximum likelihood methods we try to fit the Laplacian mixture model (LMM) centroids (source point set) to the data point set.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.