Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Self-supervised Video Object Segmentation (2006.12480v1)

Published 22 Jun 2020 in cs.CV and cs.LG

Abstract: The objective of this paper is self-supervised representation learning, with the goal of solving semi-supervised video object segmentation (a.k.a. dense tracking). We make the following contributions: (i) we propose to improve the existing self-supervised approach, with a simple, yet more effective memory mechanism for long-term correspondence matching, which resolves the challenge caused by the dis-appearance and reappearance of objects; (ii) by augmenting the self-supervised approach with an online adaptation module, our method successfully alleviates tracker drifts caused by spatial-temporal discontinuity, e.g. occlusions or dis-occlusions, fast motions; (iii) we explore the efficiency of self-supervised representation learning for dense tracking, surprisingly, we show that a powerful tracking model can be trained with as few as 100 raw video clips (equivalent to a duration of 11mins), indicating that low-level statistics have already been effective for tracking tasks; (iv) we demonstrate state-of-the-art results among the self-supervised approaches on DAVIS-2017 and YouTube-VOS, as well as surpassing most of methods trained with millions of manual segmentation annotations, further bridging the gap between self-supervised and supervised learning. Codes are released to foster any further research (https://github.com/fangruizhu/self_sup_semiVOS).

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube