Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Job Understanding at LinkedIn (2006.12425v1)

Published 29 May 2020 in cs.IR, cs.AI, cs.CL, and cs.SI

Abstract: As the world's largest professional network, LinkedIn wants to create economic opportunity for everyone in the global workforce. One of its most critical missions is matching jobs with processionals. Improving job targeting accuracy and hire efficiency align with LinkedIn's Member First Motto. To achieve those goals, we need to understand unstructured job postings with noisy information. We applied deep transfer learning to create domain-specific job understanding models. After this, jobs are represented by professional entities, including titles, skills, companies, and assessment questions. To continuously improve LinkedIn's job understanding ability, we designed an expert feedback loop where we integrated job understanding models into LinkedIn's products to collect job posters' feedback. In this demonstration, we present LinkedIn's job posting flow and demonstrate how the integrated deep job understanding work improves job posters' satisfaction and provides significant metric lifts in LinkedIn's job recommendation system.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.