Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Greedy Adversarial Equilibrium: An Efficient Alternative to Nonconvex-Nonconcave Min-Max Optimization (2006.12363v4)

Published 22 Jun 2020 in cs.DS, cs.GT, cs.LG, math.OC, and stat.ML

Abstract: Min-max optimization of an objective function $f: \mathbb{R}d \times \mathbb{R}d \rightarrow \mathbb{R}$ is an important model for robustness in an adversarial setting, with applications to many areas including optimization, economics, and deep learning. In many applications $f$ may be nonconvex-nonconcave, and finding a global min-max point may be computationally intractable. There is a long line of work that seeks computationally tractable algorithms for alternatives to the min-max optimization model. However, many of the alternative models have solution points which are only guaranteed to exist under strong assumptions on $f$, such as convexity, monotonicity, or special properties of the starting point. We propose an optimization model, the $\varepsilon$-greedy adversarial equilibrium, and show that it can serve as a computationally tractable alternative to the min-max optimization model. Roughly, we say that a point $(x\star, y\star)$ is an $\varepsilon$-greedy adversarial equilibrium if $y\star$ is an $\varepsilon$-approximate local maximum for $f(x\star,\cdot)$, and $x\star$ is an $\varepsilon$-approximate local minimum for a "greedy approximation" to the function $\max_z f(x, z)$ which can be efficiently estimated using second-order optimization algorithms. We prove the existence of such a point for any smooth function which is bounded and has Lipschitz Hessian. To prove existence, we introduce an algorithm that converges from any starting point to an $\varepsilon$-greedy adversarial equilibrium in a number of evaluations of the function $f$, the max-player's gradient $\nabla_y f(x,y)$, and its Hessian $\nabla2_y f(x,y)$, that is polynomial in the dimension $d$, $1/\varepsilon$, and the bounds on $f$ and its Lipschitz constant.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.