Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Human-Expert-Level Brain Tumor Detection Using Deep Learning with Data Distillation and Augmentation (2006.12285v3)

Published 17 Jun 2020 in cs.CV, cs.LG, and stat.ML

Abstract: The application of Deep Learning (DL) for medical diagnosis is often hampered by two problems. First, the amount of training data may be scarce, as it is limited by the number of patients who have acquired the condition to be diagnosed. Second, the training data may be corrupted by various types of noise. Here, we study the problem of brain tumor detection from magnetic resonance spectroscopy (MRS) data, where both types of problems are prominent. To overcome these challenges, we propose a new method for training a deep neural network that distills particularly representative training examples and augments the training data by mixing these samples from one class with those from the same and other classes to create additional training samples. We demonstrate that this technique substantially improves performance, allowing our method to reach human-expert-level accuracy with just a few thousand training examples. Interestingly, the network learns to rely on features of the data that are usually ignored by human experts, suggesting new directions for future research.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.