Papers
Topics
Authors
Recent
2000 character limit reached

FDFlowNet: Fast Optical Flow Estimation using a Deep Lightweight Network (2006.12263v1)

Published 22 Jun 2020 in cs.CV

Abstract: Significant progress has been made for estimating optical flow using deep neural networks. Advanced deep models achieve accurate flow estimation often with a considerable computation complexity and time-consuming training processes. In this work, we present a lightweight yet effective model for real-time optical flow estimation, termed FDFlowNet (fast deep flownet). We achieve better or similar accuracy on the challenging KITTI and Sintel benchmarks while being about 2 times faster than PWC-Net. This is achieved by a carefully-designed structure and newly proposed components. We first introduce an U-shape network for constructing multi-scale feature which benefits upper levels with global receptive field compared with pyramid network. In each scale, a partial fully connected structure with dilated convolution is proposed for flow estimation that obtains a good balance among speed, accuracy and number of parameters compared with sequential connected and dense connected structures. Experiments demonstrate that our model achieves state-of-the-art performance while being fast and lightweight.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.