Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Network with Approximation Error Being Reciprocal of Width to Power of Square Root of Depth (2006.12231v6)

Published 22 Jun 2020 in cs.LG, cs.NA, math.NA, and stat.ML

Abstract: A new network with super approximation power is introduced. This network is built with Floor ($\lfloor x\rfloor$) or ReLU ($\max{0,x}$) activation function in each neuron and hence we call such networks Floor-ReLU networks. For any hyper-parameters $N\in\mathbb{N}+$ and $L\in\mathbb{N}+$, it is shown that Floor-ReLU networks with width $\max{d,\, 5N+13}$ and depth $64dL+3$ can uniformly approximate a H\"older function $f$ on $[0,1]d$ with an approximation error $3\lambda d{\alpha/2}N{-\alpha\sqrt{L}}$, where $\alpha \in(0,1]$ and $\lambda$ are the H\"older order and constant, respectively. More generally for an arbitrary continuous function $f$ on $[0,1]d$ with a modulus of continuity $\omega_f(\cdot)$, the constructive approximation rate is $\omega_f(\sqrt{d}\,N{-\sqrt{L}})+2\omega_f(\sqrt{d}){N{-\sqrt{L}}}$. As a consequence, this new class of networks overcomes the curse of dimensionality in approximation power when the variation of $\omega_f(r)$ as $r\to 0$ is moderate (e.g., $\omega_f(r) \lesssim r\alpha$ for H\"older continuous functions), since the major term to be considered in our approximation rate is essentially $\sqrt{d}$ times a function of $N$ and $L$ independent of $d$ within the modulus of continuity.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.