Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Further progress towards Hadwiger's conjecture (2006.11798v4)

Published 21 Jun 2020 in math.CO and cs.DM

Abstract: In 1943, Hadwiger conjectured that every graph with no $K_t$ minor is $(t-1)$-colorable for every $t\ge 1$. In the 1980s, Kostochka and Thomason independently proved that every graph with no $K_t$ minor has average degree $O(t\sqrt{\log t})$ and hence is $O(t\sqrt{\log t})$-colorable. Recently, Norin, Song and the author showed that every graph with no $K_t$ minor is $O(t(\log t){\beta})$-colorable for every $\beta > 1/4$, making the first improvement on the order of magnitude of the $O(t\sqrt{\log t})$ bound. Building on that work, we show in this paper that every graph with no $K_t$ minor is $O(t (\log t){\beta})$-colorable for every $\beta > 0$. More specifically in conjunction with another paper by the author, they are $O(t \cdot (\log \log t){18})$-colorable.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.