Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Patch Based Classification of Remote Sensing Data: A Comparison of 2D-CNN, SVM and NN Classifiers (2006.11767v1)

Published 21 Jun 2020 in cs.CV and cs.LG

Abstract: Pixel based algorithms including back propagation neural networks (NN) and support vector machines (SVM) have been widely used for remotely sensed image classifications. Within last few years, deep learning based image classifier like convolution neural networks (2D-CNN) are becoming popular alternatives to these classifiers. In this paper, we compare performance of patch based SVM and NN with that of a deep learning algorithms comprising of 2D-CNN and fully connected layers. Similar to CNN which utilise image patches to derive features for further classification, we propose to use patches as an input in place of individual pixel with both SVM and NN classifiers. Two datasets, one multispectral and other hyperspectral data was used to compare the performance of different classifiers. Results with both datasets suggest the effectiveness of patch based SVM and NN classifiers in comparison to state of art 2D-CNN classifier.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.