Reinforcement Learning for Mean Field Games with Strategic Complementarities (2006.11683v3)
Abstract: Mean Field Games (MFG) are the class of games with a very large number of agents and the standard equilibrium concept is a Mean Field Equilibrium (MFE). Algorithms for learning MFE in dynamic MFGs are unknown in general. Our focus is on an important subclass that possess a monotonicity property called Strategic Complementarities (MFG-SC). We introduce a natural refinement to the equilibrium concept that we call Trembling-Hand-Perfect MFE (T-MFE), which allows agents to employ a measure of randomization while accounting for the impact of such randomization on their payoffs. We propose a simple algorithm for computing T-MFE under a known model. We also introduce a model-free and a model-based approach to learning T-MFE and provide sample complexities of both algorithms. We also develop a fully online learning scheme that obviates the need for a simulator. Finally, we empirically evaluate the performance of the proposed algorithms via examples motivated by real-world applications.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.