Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Divergence of Decentralized Non-Convex Optimization (2006.11662v1)

Published 20 Jun 2020 in math.OC and cs.LG

Abstract: We study a generic class of decentralized algorithms in which $N$ agents jointly optimize the non-convex objective $f(u):=1/N\sum_{i=1}{N}f_i(u)$, while only communicating with their neighbors. This class of problems has become popular in modeling many signal processing and machine learning applications, and many efficient algorithms have been proposed. However, by constructing some counter-examples, we show that when certain local Lipschitz conditions (LLC) on the local function gradient $\nabla f_i$'s are not satisfied, most of the existing decentralized algorithms diverge, even if the global Lipschitz condition (GLC) is satisfied, where the sum function $f$ has Lipschitz gradient. This observation raises an important open question: How to design decentralized algorithms when the LLC, or even the GLC, is not satisfied? To address the above question, we design a first-order algorithm called Multi-stage gradient tracking algorithm (MAGENTA), which is capable of computing stationary solutions with neither the LLC nor the GLC. In particular, we show that the proposed algorithm converges sublinearly to certain $\epsilon$-stationary solution, where the precise rate depends on various algorithmic and problem parameters. In particular, if the local function $f_i$'s are $Q$th order polynomials, then the rate becomes $\mathcal{O}(1/\epsilon{Q-1})$. Such a rate is tight for the special case of $Q=2$ where each $f_i$ satisfies LLC. To our knowledge, this is the first attempt that studies decentralized non-convex optimization problems with neither the LLC nor the GLC.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com