Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

MDR Cluster-Debias: A Nonlinear WordEmbedding Debiasing Pipeline (2006.11642v1)

Published 20 Jun 2020 in cs.CL and cs.CY

Abstract: Existing methods for debiasing word embeddings often do so only superficially, in that words that are stereotypically associated with, e.g., a particular gender in the original embedding space can still be clustered together in the debiased space. However, there has yet to be a study that explores why this residual clustering exists, and how it might be addressed. The present work fills this gap. We identify two potential reasons for which residual bias exists and develop a new pipeline, MDR Cluster-Debias, to mitigate this bias. We explore the strengths and weaknesses of our method, finding that it significantly outperforms other existing debiasing approaches on a variety of upstream bias tests but achieves limited improvement on decreasing gender bias in a downstream task. This indicates that word embeddings encode gender bias in still other ways, not necessarily captured by upstream tests.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.