Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Fast Stochastic Plug-and-Play ADMM for Imaging Inverse Problems (2006.11630v2)

Published 20 Jun 2020 in math.OC and cs.CV

Abstract: In this work we propose an efficient stochastic plug-and-play (PnP) algorithm for imaging inverse problems. The PnP stochastic gradient descent methods have been recently proposed and shown improved performance in some imaging applications over standard deterministic PnP methods. However, current stochastic PnP methods need to frequently compute the image denoisers which can be computationally expensive. To overcome this limitation, we propose a new stochastic PnP-ADMM method which is based on introducing stochastic gradient descent inner-loops within an inexact ADMM framework. We provide the theoretical guarantee on the fixed-point convergence for our algorithm under standard assumptions. Our numerical results demonstrate the effectiveness of our approach compared with state-of-the-art PnP methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)