Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Robust Reinforcement Learning using Least Squares Policy Iteration with Provable Performance Guarantees (2006.11608v4)

Published 20 Jun 2020 in cs.LG, cs.SY, eess.SY, and stat.ML

Abstract: This paper addresses the problem of model-free reinforcement learning for Robust Markov Decision Process (RMDP) with large state spaces. The goal of the RMDP framework is to find a policy that is robust against the parameter uncertainties due to the mismatch between the simulator model and real-world settings. We first propose the Robust Least Squares Policy Evaluation algorithm, which is a multi-step online model-free learning algorithm for policy evaluation. We prove the convergence of this algorithm using stochastic approximation techniques. We then propose Robust Least Squares Policy Iteration (RLSPI) algorithm for learning the optimal robust policy. We also give a general weighted Euclidean norm bound on the error (closeness to optimality) of the resulting policy. Finally, we demonstrate the performance of our RLSPI algorithm on some standard benchmark problems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.