Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Distributed Multi-Vehicle Coordination Algorithm for Navigation in Tight Environments (2006.11492v3)

Published 20 Jun 2020 in cs.RO

Abstract: This work presents a distributed method for multi-vehicle coordination based on nonlinear model predictive control (NMPC) and dual decomposition. Our approach allows the vehicles to coordinate in tight spaces (e.g., busy highway lanes or parking lots) by using a polytopic description of each vehicle's shape and formulating collision avoidance as a dual optimization problem. Our method accommodates heterogeneous teams of vehicles (i.e., vehicles with different polytopic shapes and dynamic models can be part of the same team). Our method allows the vehicles to share their intentions in a distributed fashion without relying on a central coordinator and efficiently provides collision-free trajectories for the vehicles. In addition, our method decouples the individual-vehicles' trajectory optimization from their collision-avoidance objectives enhancing the scalability of the method and allowing one to exploit parallel hardware architectures. All these features are particularly important for vehicular applications, where the systems operate at high-frequency rates in dynamic environments. To validate our method, we apply it in a vehicular application, that is, the autonomous lane-merging of a team of connected vehicles to form a platoon. We compare our design with the centralized NMPC design to show the computational benefits of the proposed distributed algorithm.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: