Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

PDE-based Dynamic Density Estimation for Large-scale Agent Systems (2006.11461v1)

Published 20 Jun 2020 in eess.SY and cs.SY

Abstract: Large-scale agent systems have foreseeable applications in the near future. Estimating their macroscopic density is critical for many density-based optimization and control tasks, such as sensor deployment and city traffic scheduling. In this paper, we study the problem of estimating their dynamically varying probability density, given the agents' individual dynamics (which can be nonlinear and time-varying) and their states observed in real-time. The density evolution is shown to satisfy a linear partial differential equation uniquely determined by the agents' dynamics. We present a density filter which takes advantage of the system dynamics to gradually improve its estimation and is scalable to the agents' population. Specifically, we use kernel density estimators (KDE) to construct a noisy measurement and show that, when the agents' population is large, the measurement noise is approximately ``Gaussian''. With this important property, infinite-dimensional Kalman filters are used to design density filters. It turns out that the covariance of measurement noise depends on the true density. This state-dependence makes it necessary to approximate the covariance in the associated operator Riccati equation, rendering the density filter suboptimal. The notion of input-to-state stability is used to prove that the performance of the suboptimal density filter remains close to the optimal one. Simulation results suggest that the proposed density filter is able to quickly recognize the underlying modes of the unknown density and automatically ignore outliers, and is robust to different choices of kernel bandwidth of KDE.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.