Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient implementations of echo state network cross-validation (2006.11282v2)

Published 19 Jun 2020 in cs.LG, cs.NE, and stat.ML

Abstract: Background/introduction: Cross-Validation (CV) is still uncommon in time series modeling. Echo State Networks (ESNs), as a prime example of Reservoir Computing (RC) models, are known for their fast and precise one-shot learning, that often benefit from good hyper-parameter tuning. This makes them ideal to change the status quo. Methods: We discuss CV of time series for predicting a concrete time interval of interest, suggest several schemes for cross-validating ESNs and introduce an efficient algorithm for implementing them. This algorithm is presented as two levels of optimizations of doing $k$-fold CV. Training an RC model typically consists of two stages: (i) running the reservoir with the data and (ii) computing the optimal readouts. The first level of our optimization addresses the most computationally expensive part (i) and makes it remain constant irrespective of $k$. It dramatically reduces reservoir computations in any type of RC system and is enough if $k$ is small. The second level of optimization also makes the (ii) part remain constant irrespective of large $k$, as long as the dimension of the output is low. We discuss when the proposed validation schemes for ESNs could be beneficial, three options for producing the final model and empirically investigate them on six different real-world datasets, as well as do empirical computation time experiments. We provide the code in an online repository. Results: Proposed CV schemes give better and more stable test performance in all the six different real-world datasets, three task types. Empirical run times confirm our complexity analysis. Conclusions: In most situations $k$-fold CV of ESNs and many other RC models can be done for virtually the same time and space complexity as a simple single-split validation. This enables CV to become a standard practice in RC.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.