Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Emotion Recognition on large video dataset based on Convolutional Feature Extractor and Recurrent Neural Network (2006.11168v1)

Published 19 Jun 2020 in cs.CV and cs.LG

Abstract: For many years, the emotion recognition task has remained one of the most interesting and important problems in the field of human-computer interaction. In this study, we consider the emotion recognition task as a classification as well as a regression task by processing encoded emotions in different datasets using deep learning models. Our model combines convolutional neural network (CNN) with recurrent neural network (RNN) to predict dimensional emotions on video data. At the first step, CNN extracts feature vectors from video frames. In the second step, we fed these feature vectors to train RNN for exploiting the temporal dynamics of video. Furthermore, we analyzed how each neural network contributes to the system's overall performance. The experiments are performed on publicly available datasets including the largest modern Aff-Wild2 database. It contains over sixty hours of video data. We discovered the problem of overfitting of the model on an unbalanced dataset with an illustrative example using confusion matrices. The problem is solved by downsampling technique to balance the dataset. By significantly decreasing training data, we balance the dataset, thereby, the overall performance of the model is improved. Hence, the study qualitatively describes the abilities of deep learning models exploring enough amount of data to predict facial emotions. Our proposed method is implemented using Tensorflow Keras.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.