Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robustness of Pisot-regular sequences (2006.11126v2)

Published 19 Jun 2020 in math.CO, cs.DM, and cs.FL

Abstract: We consider numeration systems based on a $d$-tuple $\mathbf{U}=(U_1,\ldots,U_d)$ of sequences of integers and we define $(\mathbf{U},\mathbb{K})$-regular sequences through $\mathbb{K}$-recognizable formal series, where $\mathbb{K}$ is any semiring. We show that, for any $d$-tuple $\mathbf{U}$ of Pisot numeration systems and any commutative semiring $\mathbb{K}$, this definition does not depend on the greediness of the $\mathbf{U}$-representations of integers. The proof is constructive and is based on the fact that the normalization is realizable by a $2d$-tape finite automaton. In particular, we use an ad hoc operation mixing a $2d$-tape automaton and a $\mathbb{K}$-automaton in order to obtain a new $\mathbb{K}$-automaton.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.