Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

On the effect of normalization layers on Differentially Private training of deep Neural networks (2006.10919v2)

Published 19 Jun 2020 in cs.LG, cs.CR, and stat.ML

Abstract: Differentially private stochastic gradient descent (DPSGD) is a variation of stochastic gradient descent based on the Differential Privacy (DP) paradigm, which can mitigate privacy threats that arise from the presence of sensitive information in training data. However, one major drawback of training deep neural networks with DPSGD is a reduction in the models accuracy. In this paper, we study the effect of normalization layers on the performance of DPSGD. We demonstrate that normalization layers significantly impact the utility of deep neural networks with noisy parameters and should be considered essential ingredients of training with DPSGD. In particular, we propose a novel method for integrating batch normalization with DPSGD without incurring an additional privacy loss. With our approach, we are able to train deeper networks and achieve a better utility-privacy trade-off.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.