Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

"And then they died": Using Action Sequences for Data Driven,Context Aware Gameplay Analysis (2006.10823v1)

Published 18 Jun 2020 in cs.HC

Abstract: Many successful games rely heavily on data analytics to understand players and inform design. Popular methodologies focus on machine learning and statistical analysis of aggregated data. While effective in extracting information regarding player action, much of the context regarding when and how those actions occurred is lost. Qualitative methods allow researchers to examine context and derive meaningful explanations about the goals and motivations behind player behavior, but are difficult to scale. In this paper, we build on previous work by combining two existing methodologies: Interactive Behavior Analytics (IBA) and sequence analysis (SA), in order to create a novel, mixed methods, human-in-the-loop data analysis methodology that uses behavioral labels and visualizations to allow analysts to examine player behavior in a way that is context sensitive, scalable, and generalizable. We present the methodology along with a case study demonstrating how it can be used to analyze behavioral patterns of teamwork in the popular multiplayer game Defense of the Ancients 2 (DotA 2).

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.