Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semi-Supervised Recognition under a Noisy and Fine-grained Dataset (2006.10702v1)

Published 18 Jun 2020 in cs.CV

Abstract: Simi-Supervised Recognition Challenge-FGVC7 is a challenging fine-grained recognition competition. One of the difficulties of this competition is how to use unlabeled data. We adopted pseudo-tag data mining to increase the amount of training data. The other one is how to identify similar birds with a very small difference, especially those have a relatively tiny main-body in examples. We combined generic image recognition and fine-grained image recognition method to solve the problem. All generic image recognition models were training using PaddleClas . Using the combination of two different ways of deep recognition models, we finally won the third place in the competition.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.