Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gradient Amplification: An efficient way to train deep neural networks (2006.10560v1)

Published 16 Jun 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Improving performance of deep learning models and reducing their training times are ongoing challenges in deep neural networks. There are several approaches proposed to address these challenges one of which is to increase the depth of the neural networks. Such deeper networks not only increase training times, but also suffer from vanishing gradients problem while training. In this work, we propose gradient amplification approach for training deep learning models to prevent vanishing gradients and also develop a training strategy to enable or disable gradient amplification method across several epochs with different learning rates. We perform experiments on VGG-19 and resnet (Resnet-18 and Resnet-34) models, and study the impact of amplification parameters on these models in detail. Our proposed approach improves performance of these deep learning models even at higher learning rates, thereby allowing these models to achieve higher performance with reduced training time.

Citations (102)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.