Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confident Off-Policy Evaluation and Selection through Self-Normalized Importance Weighting (2006.10460v3)

Published 18 Jun 2020 in cs.LG and stat.ML

Abstract: We consider off-policy evaluation in the contextual bandit setting for the purpose of obtaining a robust off-policy selection strategy, where the selection strategy is evaluated based on the value of the chosen policy in a set of proposal (target) policies. We propose a new method to compute a lower bound on the value of an arbitrary target policy given some logged data in contextual bandits for a desired coverage. The lower bound is built around the so-called Self-normalized Importance Weighting (SN) estimator. It combines the use of a semi-empirical Efron-Stein tail inequality to control the concentration and a new multiplicative (rather than additive) control of the bias. The new approach is evaluated on a number of synthetic and real datasets and is found to be superior to its main competitors, both in terms of tightness of the confidence intervals and the quality of the policies chosen.

Citations (44)

Summary

We haven't generated a summary for this paper yet.